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Abstract We introduce a novel approach for analyzing the worst-case performance
of first-order black-box optimization methods. We focus on smooth unconstrained
convex minimization over the Euclidean space. Our approach relies on the observation
that by definition, the worst-case behavior of a black-box optimization method is by
itself an optimization problem, which we call the performance estimation problem
(PEP). We formulate and analyze the PEP for two classes of first-order algorithms.
We first apply this approach on the classical gradient method and derive a new and tight
analytical bound on its performance. We then consider a broader class of first-order
black-box methods, which among others, include the so-called heavy-ball method and
the fast gradient schemes. We show that for this broader class, it is possible to derive
new bounds on the performance of these methods by solving an adequately relaxed
convex semidefinite PEP. Finally, we show an efficient procedure for finding optimal
step sizes which results in a first-order black-box method that achieves best worst-case
performance.
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1 Introduction

First-order convex optimization methods have recently gained in popularity both in
theoretical optimization and in many scientific applications, such as signal and image
processing, communications, machine learning, and many more. These problems are
very large scale, and first-order methods, which in general involve very cheap and
simple computational iterations, are often the best option to tackle such problems
in a reasonable time, when moderate accuracy solutions are sufficient. For convex
optimization problems, there exists an extensive literature on the development and
analysis of first-order methods, and in recent years, this has been revitalized at a quick
pace due to the emergence of many fundamental new applications alluded above. On
the theoretical front see e.g., the recent works [9,12,19] and for applications see the
collections [17,21] and references therein.

This work is not on the development of new algorithms, rather it focuses on the the-
oretical performance analysis of first-order methods for unconstrained minimization
with an objective function which is known to belong to a given family .% of smooth
convex functions over the Euclidean space RY.

Following the seminal work of Nemirovsky and Yudin [14] in the complexity analy-
sis of convex optimization methods, we measure the computational cost based on the
oracle model of optimization. According to this model, a first-order black-box opti-
mization method is an algorithm .7 which has knowledge of the underlying space R¢
and the family .%#, where the function itself is not known. To gain information on the
objective function f to be minimized, the algorithm queries a first-order oracle, that
is, a subroutine which given as input a point in R?, returns the value of the objective
function and its gradient at that point. The algorithm starts with a given point xo € R?
and generates a finite sequence of points {x; € RY : i = 1,..., N}, where at each
step the algorithm can depend only on the previous steps, their function values and
gradients via some rule

Xigl = (X0, .., xi3 f(X0), ooy fxi); f1(x0)s o, f1(xi)), i =0,...,N—1,

where f’(-) stands for the gradient of f (-). Note that the algorithm has another implicit
knowledge, i.e., that the distance from its initial point xo to a minimizer x, € X, (f)
of f is bounded by some constant R > 0, see more precise definitions in the next
section.

Given a desired accuracy ¢ > 0, applying the given algorithm on the function f in
the class .#, the algorithm stops when it produces an approximate solution x, which
is e-optimal, that is such that

Sxe) — flxe) <e.
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The worst-case performance (or complexity) of a first-order black-box optimization
algorithm is then measured by the number of oracle calls the algorithm needs to find
such an approximate solution. Equivalently, we can measure the worst-case perfor-
mance of an algorithm by looking at the absolute inaccuracy

8Cf.xn) = fxn) — f(x0),

where x is the result of the algorithm after making N calls to the oracle. Throughout
this paper we will use the latter form to measure the performance of a given algorithm.

Building on this model, in this work we introduce a novel approach for analyzing
the performance of a given first-order scheme. Our approach relies on the observation
that by definition, the worst-case behavior of a first-order black-box optimization
algorithm is by itself an optimization problem which consists of finding the maximal
absolute inaccuracy over all possible inputs to the algorithm. Thus, with x being the
output of the algorithm after making N calls to the oracle, we look at the solution of
the following Performance Estimation Problem (PEP):

max  f(xy) — f(xs) (P)
st. feZF,

Xip = (X0, ..., Xi5 f(x0), ..., f(xi); f1(x0), ..., f/(xi), i=0,...,N—1,
X« € Xi(f), llxx —x0ll <R,

X0y o v vy XN Xy e RY,

At first glance this problem seems very hard or impossible to solve. We overcome
this difficulty through an analysis that relies on various types of relaxations, including
duality and semi-definite relaxation techniques. The problem setting and an outline of
the underlying idea of the proposed approach for analyzing (P) are described in Sect. 2.
In order to develop the basic idea and tools underlying our proposed approach, we
first focus on the fundamental gradient method (GM) for smooth convex minimization,
and then extend it to a broader class of first-order black-box minimization methods.
Obviously, the GM is a particular case of this broader class that will be analyzed below.
However, it is quite important to start with the GM for two reasons. First, it allows to
acquaint the reader in a more transparent way with the techniques and methodolgy we
need to develop in order to analyze (P), thus paving the way to tackle more general
schemes. Secondly, for the GM, we are able to prove a new and tight bound on its
performance which is given analytically, see Sect. 3. Capitalizing on the methodology
and tools developed in the past section, in Sect. 4, we consider a broader class of first-
order black-box methods, which among others, is shown to include the so-called heavy-
ball [18] and fast gradient schemes [16]. Although an analytical solution is not available
for this general case, we show that for this broader class of methods, it is possible to
compute numerical estimates for an adequate relaxation of the corresponding PEP,
allowing to derive new bounds on the performance of these methods. We then derive
in Sect. 5 an efficient procedure for finding optimal step sizes which results in a first-
order method that achieves best worst-case performance. Our approach and analysis
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give rise to some interesting problems leading us to suggest some conjectures. Finally,
an “Appendix” includes the proof of a technical result.

Notation For a differentiable function f, its gradient at x is denoted by f’(x). The
Euclidean norm of a vector x € R? is denoted as ||x||. The set of symmetric matrices
in R™*" is denoted by S". For two symmetric matrices A and B, A > B, (A > B)
means A — B > 0(A — B > 0) is positive semidefinite (positive definite). We use
e; for the ith canonical basis vector in RY, which consists of all zero components,
except for its ith entry which is equal to one, and use v to denote a unit vector in RY.
For an optimization problem (P), val(P) stands for its optimal value.

2 The problem and the main approach

2.1 The problem and basic assumptions

Let 7 be a first-order algorithm for solving the optimization problem
(M) min{f(x): x € R?}.

Throughout the paper we make the following assumptions:

- f: R4 - Ris a convex function of the type C i’l(Rd ), i.e., continuously differ-
entiable with Lipschitz continuous gradient:

Lf' ) = 'O < Lilx = yll, Vx,y € R,

where L > 0 is the Lipschitz constant.

— We assume that (M) is solvable, i.e., the optimal set X, (f) := arg minf is non-
empty.

— There exists R > 0, such that the distance from the given starting point of the
algorithm x¢ to an optimal solution x, € X, (f) is bounded by R.!

Given a convex function f in the class C i’l(Rd ) and any starting point xo € R?,
the algorithm 27 is a first-order black-box scheme, i.e., it is allowed to access f only
through the sequential calls to the first-order oracle that returns the value and the
gradient of f at any input point x. The algorithm .o/ then generates a sequence of
points x; € R4, i=0,...,N.

2.2 Basic idea and main approach

We are interested in measuring the worst-case behavior of a given algorithm .o/ in
terms of the absolute inaccuracy f(xy) — f(x4), by solving problem (P) defined in
the introduction, namely

' general, the terms L and R are unknown or difficult to compute, in which case some upper bound
estimates can be used in place. Note that all currently known complexity results for first-order methods
depend on L and R.
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max f(xy) — f(xs) (P)
st. fe Ci’l(Rd), fis convex,

Xipt = (X0, -+« o, Xi5 F(X0)s -y L); f1(X0)s -y [/ (X)), i=0,...,N—1,
X € X (f), X« — x0ll < R,

X0, ...y XN, Xx e R,

To tackle this problem, we suggest to perform a series of relaxations thereby reach-
ing a tractable optimization problem.

A main difficulty in problem (P) lies in the functional constraint (the variable f
is a convex function in Ci’l (R?)), i.e., we are facing an abstract hard optimization
problem in infinite dimensions. To overcome this difficulty, the approach taken in
this paper is to relax this constraint so that the problem can be reduced and for-
mulated as an explicit finite dimensional problem that can eventually be adequately
analyzed.

An informal description of the underlying idea consists of two main steps as follows:

— Given an algorithm .o¢ that generates a finite sequence of points, to build a problem
in finite dimensions we replace the functional constraint f € C i’l in (P) by new
variables in R?. These variables, are the points {xg, X1, ... Xy, Xx} themselves, the
function values and their gradients at these points. Roughly speaking, this can be
seen as a sort of discretization of f at a selected set of points.

— To define constraints that relate the new variables, we use relevant/useful proper-
ties characterizing the family of convex functions in Ci’l, as well as the rule(s)
describing the given algorithm .7

This approach can, in principle, be applied to any optimization algorithm. Note that
any relaxation performed on the maximization problem (P) may increase its optimal
value, however, the optimal value of the relaxed problem still remains a valid upper
bound on f(xy) — f(x). Also note that once a bound on the absolute inaccuracy has
been established, it is possible to find a bound that does not depend on the unknown
term f (x4), €.2., from the well-known property || f'(xy) ||2 < fxn) — f(xy).

A formal description on how this approach can be applied to the GM is described
in the next section, which as we shall see, allows us to derive a new tight bound on the
performance of the GM.

3 An analytical bound for the gradient method

To develop the basic idea and tools underlying the proposed approach for analyzing the
performance of iterative optimization algorithms, in this section we focus on the sim-
plest fundamental method for smooth convex minimization, the GM. It will also pave
the way to tackle more general first-order schemes as developed in the forthcoming
sections.
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3.1 A performance estimation problem for the gradient method

Consider the gradient algorithm with constant step size, as applied to problem (M),
which generates a sequence of points as follows:

Algorithm GM

0. Input: f € Ci’l(Rd) convex, xo € RY.
1. Fori =0,..., N — 1, compute x; 1] = x; — %f’(xi).

Here i > 0 is fixed. Note that while simple, this algorithm is restricted to problems
where the Lipschitz constant L is known or can be efficiently estimated.

At this point, recall that for 2 = 1, the convergence rate of the Algorithm GM can
be shown to be (see for example [4,16]):

L|lxo — x]?

flxn) — flxy) < TN ,

Vx. € Xi(f). 3.1

We be%in our analysis with a well-known fundamental property for the class of
convex CL’l functions, see e.g., [16, Theorem 2.1.5].

Proposition 1 Let f : R — R be convex and C i’l. Then,

1
STIF@=FOI? = fO—-fO=(f0)x=y). forall x.y R (32)

Let xo € R be any starting point, let {x1, . .., xy} be the points generated by Algo-
rithm GM and let x, be a minimizer of f. Applying (3.2) onthe points {xq, ..., Xy, Xx},
we get:

1
ST GO=FGPIP = o= Faep=(f'Gepoxi =xj). i j =0, Nox

3.3)
Now define
i = ——m— ) — , i=0,...,N,
i L||x*—x0||2(f(x’) S ), i *
1
gii=——f'(x;), i=0,...,N, %
" Lllxe—xoll "
and note that we always have 6, = 0 and g, = 0.
In terms of §;, g;, condition (3.3) becomes
Llgi—gIP <8 -8 (o) 0N (G.4)
—llgi—gill- <8 -8 ————, i,j=0,..., N, %, .
27 S e —xol
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and the recurrence defining Algorithm GM reads:
Xi+1 = X; — hllx« —xollgi, i=0,...,N—1.

Problem (P) can now be relaxed by discarding the underlying function f € C i’l

in (P). That is, the constraint in the function space f € Ci’l with f convex, is

replaced by the inequalities (3.4) characterizing this family of functions and expressed
in terms of the variables xq, ..., xy, Xx € RY, g0,...,8N € R4 and 80,...,0n8 €R
generated by Algorithm GM. Thus, an upper bound on the worst-case behavior of
f(xn) — f(xy) = L|lxsx — x0]?>8x can be obtained by solving the following relaxed
PEP:

max  Llx, — xol*Sn

80,---gn ER?
50, .,5N€R
st Xiy1 =x; — hllxe — xollgi, i=0,...,N—1,
18 —&jillm <0 —0j — ———, 1, ] =0,..., N, %
2 [l — xoll

[lxs — x0ll < R.

Simplifying the PEP The obtained problem remains nontrivial to tackle. We will now
perform some simplifications on this problem that will be useful for the forthcoming
analysis.

First, we observe that the problem is invariant under the transformation g/ < Qg;,
x/ < Qx; for any orthogonal transformation Q. We can therefore assume without
loss of generality that x, — xo = ||x4x — Xo||v, where v is any given unit vector in RY.
Therefore, for i = * the inequality constraints reads

<gj, [l — xollv + x0 _xj>

1 .
Eug*—g,»nzss*—a,-— . j=0,...,N.

llx5 — Xoll

Secondly, we consider (3.4) for the four casesi = %, j = %,i < jand j < i, and use
the equality constraints

Xi+1 = Xx; — h|lxs —xo0llgi, i=0,...,N—1

to eliminate the variables xp, . . ., xn. After some algebra, we reach the following form
for the PEP:
max  Lix, — xo[*8n

x0.%x,8i R §; R

1 d o
st5llg = gjl? <8 =5 —<gj, > hgtl>, i<j=0,...,N,
t=i+1
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I " o
zllgi—gjllzféi—6j+<gj, > hgt_1>, j<i=0,...,N,
=j+1

1 i _
5”81”25_81_<glav+zhgl—l>a l=07"'1N7

t=1

1 2 .
Ellgill <8, i=0,...,N,

lxx — x0ll < R,

where i < j = 0,..., N is a shorthand notation fori = 0,...,N —1,j =i +
I,...,N.

Finally, we note that the optimal solution for this problem is attained when ||x, —
xo|l = R, and hence we can also eliminate the variables xg and x,. This produces the
following PEP for the GM, a nonconvex quadratic minimization problem:

max LR28N

g,-ERd,S,-eR
J
s.t.—||gl—g,|| <8 -9 <g,, > e 1>, i<j=0,...,N,

t=i+1

1 i

Sllsi = gjI? < —6]+<g1, hgio1), j<i=0,....N,
t=j+1

1 .

Sl <8 i=0,...,N,

1 i .
§||gl||2§_81_<gl5v+zhgl1>7 l=07"'5N'

t=1

This problem can be written in a more compact and useful form. Let G denote the
(N + 1) x d matrix whose rows are gOT e g,{,, and for notational convenience let
u; € RVt denote the canonical unit vector

ui =ejy1, i=0,...,N.
Then for any i, j, we have
g = GTui, tr(GTuiu]TG) = <gl~, gj>, and <GTui, v> = <g,~, v>.
Therefore, by defining the following (N + 1) x (N + 1) symmetric matrices

1 1 <
Ajj = E(“i —up)(ui —up)’ + Et;;’l h (ujutT,I ~|—ut,1u]r) ,
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1 1 <
B ;= E(ui —up) i —up)’ — 3 Z h (uju,T_l +u,_1u]T) ,
r=j+1
1
= Euil/tiT,
T T T
D; = Euiui + 5 Z/’l (I/tl‘btt_l + u—qu; ) , 3.5)

=1

we can express our nonconvex quadratic minimization problem in terms of § :=
(80, ..., 8n) € RVN*T! and the new matrix variable G € RV TD*4 45 follows

max LR*Sy (G)
GeRWN+Dxd §eRN+1

st.t(GTA; jG) <8 —8;, i<j=0,...,N,
t(GTB; ;G) <8 —8;, j<i=0,...,N,
(G C;G) <8, i=0,...,N,
t(G'D;G +vu! Gy < —8, i=0,...,N.

Problem (G) is a nonhomogeneous Quadratic Matrix Program, a class of problems
introduced and studied by Beck [3].

3.2 A tight performance estimate for the gradient method

We now proceed to establish the two main results of this section. First, we derive an
upper bound on the performance of the GM, this is accomplished via using duality
arguments. Then, we show that this bound can actually be attained by applying the
GM on a specific convex function in the class C i’l.

In order to simplify the following analysis, we will remove some constraints from
(G) and consider the bound produced by the following relaxed problem:

LR%Sy (G

max
GER(NJrl)xd’SeRNJrl
st.tr(GTA;_1,G)<8_1—68, i=1,....,N,
tr(G' D;G +vul G) < —¢8;, i=0,...,N.

As we shall show below, it turns out that this additional relaxation has no damaging
effects and produces the desired performance bound when 0 < 2 < 1.

We are interested in deriving a dual problem for (G’) which is as simple as pos-
sible, especially with respect to its dimension. As noted earlier, problem (G') is a
nonhomogeneous quadratic matrix program, and a dual problem for (G") could be
directly obtained by applying the results developed by Beck [3]. However, the result-
ing obtained dual will involve an additional matrix variable @ € S¢, where d can
be very large. Instead, here by exploiting the special structure of the second set of
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nonhomogeneous inequalities given in (G’), we derive an alternative dual problem,
but with only one additional variable ¢ € R.

To establish our dual result, the next lemma shows that a dimension reduction is
possible when minimizing a quadratic matrix function sharing the special form as the
one that appears in problem (G').

Lemmal Ler f(X) = tr(XTQX +2ba’ X) be a quadratic function, where X €
R™™m 0 eS" aeR"and0 # b € R™. Then

inf | fO) = inf f (ng) .

XecRnxm

Proof  First, we recall (this can be easily verified) thatinf{f (X) : X € R""} > —o0
if and only if Q > 0, and there exists at least one solution X such that

O0X+ab" =0 & XTQ+ba’ =0, (3.6)

i.e., the above is just V f(X) = 0 and characterizes the minimizers of the convex
function f(X). Using (3.6) it follows that infy f(X) = f(X) = tr(ba’ X). Now, for
any & € R", we have f(£bT) = ||b||>(¢T Q¢ + 24T £). Thus, likewise, inf{ f (§b7) :
£ € R"} > —ooif and only if Q > 0 and there exists £ € R” such that

Q& +a =0, (3.7)
and using (3.7) it follows inf; f(£b7) = f(EbT) = ||b|*a” & = tr(ba” €DT). Now,

using (3.6)—(3.7), one obtains X' Q = —ba’ and Q(X — £bT) = 0, and hence it
follows that

FX) = fET) =1 (ba” (X~ ET))
—tr (—XTQ (5( — ébT)) =0

Equipped with Lemma 1, we now derive a Lagrangian dual for problem (G').

Lemma 2 Consider problem (G') for any fixed h € R and L, R > 0. A Lagrangian
dual of (G') is given by the following convex program:

1
min {—Lth s aeA, SOt = o] , (DG)
AeRN R | 2

where A i={A e RN : Ay —2; >0, i=1,....N—1, 1—xy >0, & >
0, i=1,..., N}, the matrix S(-, ) € SN*2 is given by

SO 1) = ((1 — h)qS}) + hS) ?) ’
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withg = (A, A2 — A1, ..., AN —An—1, 1 — anv) T and where the matrices So, S) €
SN*1 are defined by:

201 —A
-1 2X  —A2
—Xy  2)3 —A3
So = . ) . (3.8)
—AN-1 2AN —AN
—AN 1
and
201 Ao — M oo AN —AN_1 1 —AN
Ay — A 202 AN —An—1 1 —Apn
N : : . (3.9
AN —AN-1 AN —AN_1 2AN 1—An
1—An 1—An 1—An 1

Proof For convenience, we recast (G’) as a minimization problem, and we also omit
the fixed term LR? from the objective. That is, we consider the equivalent problem
(G”) defined by

min — 8N (G
GeRW+Dxd §eRN+1
st.tr(GTA;_1,G)<8_1—68, i=1,...,N,
(G D;G +vu! Gy < —8, i=0,...,N.

Attaching the dual multipliers A = (A1, ..., An) € Rﬂ\_’ and 7 := (19, ..., 3)] €
Rﬁ“ to the first and second set of inequalities respectively, and using the notation
8 = (8o, ..., dn), we get that the Lagrangian of this problem is given as a sum of two
separable functions in the variables (§, G):

N N
L(G,8,A,T) =06y + ZM(&' =81+ Zfi&‘
i=1 =0

N N
+ 3 nt(GT A1) + > g (GTD,'G + vuiTG)
i=1 i=0

=L1(5,A, 1)+ L2(G, A, 7).
The dual objective function is then defined by

H\, t)= rgi?L(G, S, A1) = rrgnLl(é, A, T) +IrgnL2(G, A, T),
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and the dual problem of (G”) is then given by
max [H(, 1) : 2 e RY, 7 e REF] (DG
Since L (-, A, 7) is linear in §, we have ming L (8, A, T) = 0 whenever
—A1+10=0,
A—hipi AT =0 (=1,....,N—1), (3.10)

—14+iy+17v =0,

and —oo otherwise. Invoking Lemma 1, we get

min  Ly(G,A,t) = min L (va, A, 1:) .

GeRWN+Dxd weRN+1

Therefore for any (X, ) satisfying (3.10), we have obtained that the dual objective
reduces to

N N
; T AL D, T
H(, 1) wéanz{/lﬂ [w (Z)”Al_]’l —l—Zr,D,)w—i—r w]
i=1 i=0
1 al al 1
1}162111% [—21 cwT (ZA,-A,'L[ +Zt,>D,-)w +7Tw < _Et’ Yw € RN+]]
i=1 i=0

[ 1 (ZzN_l )‘iAifl,i + ZzN:O 7; D; ‘L') ]
>0¢.
t

—=t:
2 gt
where the last equality follows from the well known lemma [6, p. 163].2
Now, recalling the definition of the matrices A;_1 ;, D; (see [3.5)], we obtain

= max
teR

BO— D=

Al (h — 1Dy
(h—Di1 A +r (h—1Diy
(h—Dry do+rs  (h—1Di3

S rdg =
‘ iAi—1,0 = )
i=1

(h—DAy—1 An—1+ Ay (h =Dy
(h — Dan AN

M b
2 LetMbea symmetric matrix. Then, xT Mx + 26T x +c¢>0,Vx € R4 if and only if the matrix (bT c)

is positive semidefinite.
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and
70 hty ... hty_1 hty
N hty T hty_1 hty
2:GQ==§ : :
i=0 hty—1 hty—g IN—1 hty
h‘L’N /’l‘L’N . /’l‘L’N N

Finally, using the relations (3.10) to eliminate t;, and recalling that va(G”") was defined
as —L R%val(G'), the desired form of the stated dual problem follows. O

The next lemma will be crucial in invoking duality in the forthcoming theorem.
The proof for this lemma is quite technical and appears in the “Appendix”.

Lemma 3 Let
. i
TN 41 -0’

i

then the matrices So, S1 € SNT! defined in (3.8)~(3.9) are positive definite for every
NeN

We are now ready to establish a new upper bound on the complexity of the GM for
values of & between 0 and 1. To the best of our knowledge, the tightest bound thus far
is given by (3.1).

Theorem 1 Let f € CI{’I(R‘J) and let xg, ..., xy € RY be generated by Algo-
rithm GM withQ < h < 1. Then

LR?

SOn) = flx) < m

3.11)

Proof First note that both (G) and (G’) are clearly feasible and val(G) < val(G').
Invoking Lemma 2, by weak duality for the pair of primal-dual problems (G’) and
(DG), we thus obtain that val(G’) < val(DG’) and hence:

fxn) — f(xy) < val(G) < val(G') < val(DG). (3.12)
Now consider the following point (A, r) for the dual problem (DG'):
i

TOAN+ 11—
1

t= ——.
2Nh +1

i=1,...,N,

i

Assuming that this point is (DG’)-feasible, it follows from (3.12) that

LR?

Fxn) = f(xs) < val(DG) < INh T2
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which proves the desired result. Thus, it remains to show that the above given choice
(A, 1) is feasible for (DG’). First, it is easy to see that all the linear constraints of
(DG’) on the variables A;,i = 1, ..., N described through the set A hold true. Now
we prove that the matrix S = S(A, 1) is positive semidefinite. From Lemma 3, with
h € [0, 1], we get that (1 — h)Sp + hS; is positive definite, as a convex combina-
tion of positive definite matrices. Next, we argue that the determinant of S is zero.
Indeed, take u := (1,...,1,—(2Nh + 1))7, then from the definition of S and the
choice of A; and 7 it follows by elementary algebra that Su = 0. To complete the argu-
ment, we note that the determinant of S can also be found via the identity (see, e.g.,
[7, Section A.5.5]):

det(S) = (t —qT (1 = h)Sp + hS)~! q) det((1 — h)So + hSy).

Since we have just shown that (1 —h)So+hS; > 0, thendet((1 —%)So+AS;) > 0and
we get from the above identity that the value of t — g7 ((1 — h)So + hS1)~'q, which
is the Schur complement of the matrix S, is equal to 0. By a well known lemma on the
Schur complement [6, Lemma 4.2.1], we conclude that S is positive semidefinite. O

The next theorem gives a lower bound on the worst-case complexity of Algo-
rithm GM. In particular, it shows that the bound (3.11) is tight and that it is attained
by a specific convex function in C i I

Theorem 2 Let L > 0, N € Nandd € N. Then for every h > 0 there exists a convex
functiongp € C 11‘ ! (R?) and a point xo € RY such that after N iterations, Algorithm GM
reaches an approximate solution xy with the following absolute inaccuracy

. LR?
YN == N2
Proof For the sake of simplicity we will assume that L = 1 and R = ||x, — x|l = 1.
Generalizing this proof to general values of L and R can be done by an appropriate
scaling.
Consider the function

1 1 : 1
o(x) = [zml 161l = s i 16l = gk

1 ‘ 1
slxl?, if | xll < 53777

Note that this function is nothing else but the Moreau proximal envelope [13] of
the function x +— |x||/(2Nh + 1). It is well known that this function is convex,
continuously differentiable with Lipschitz constant L = 1, and that its minimal value
¢(xy) = 0, seee.g., [13,20]. Applying the GM on ¢(x) with xo = v where, as before,
v is a unit vector in R? (note that only the first part the ¢ is relevant), we obtain that
fori =0,...,N:
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ih
xi=(1————)v,
( 2Nh+l)

e pp—_—
Y2NR 41
d o(x) 1 ] ih 1
an )=——\1- —
P = N+ 1 INL+1)  20Nh +1)?
B 1 ANh+1—2ih
~ 4Nh+2 2Nh+1
Therefore,
(en) — () = @(xn) :
XN) —o(x) = pxy) = —————
QXN P (X% XN ANh 12
and the desired claim is proven. O

We conclude this section by raising a conjecture on the worst-case performance of
the GM with a constant step size 0 < & < 2. Note that when 0 < 4 < 1 the bound
below coincides with (3.11).

Conjecture 1 Suppose the sequence xo, ..., xy is generated by Algorithm GM with
0 < h < 2, then

LR?
fln) = flx) < max
2 (2Nh+1

(1 — h)”) :

4 New bounds on a class of first-order methods

The framework developed in the previous sections will now serve as a basis to extend
the worst-case performance analysis for a broader class of first-order methods for
minimizing a smooth convex function over RY. First, we define a general class of
first-order algorithms and we show that it encompasses some interesting first-order
methods. Then, following our approach, we define the corresponding PEP associated
with this class. Although for this more general case, an analytical solution is not
available for determining the bound, we establish that given a fixed number of steps
N, abound on the performance of algorithms in this class can be estimated numerically.
We then illustrate how this result can be applied for deriving new complexity bounds
on two first-order methods.

4.1 A general first-order algorithm: definition and examples

As before, our family .7 is the class of convex functions in C z’l (Rd), and{d, N, L, R}
are fixed. Consider the following class of first-order methods:
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Algorithm FO

0. Input: f € C;"' (RY), xo € RY.
1. Fori =0,...,N — 1, compute xj41 = X — + >_ R ().

Here, h,((') € R play the role of step-sizes, which we assume to be determined by
each specific algorithm in this class in a way that is independent of the problem data
(i.e., f and xp).

The interest in the analysis of first-order algorithms of this type is motivated by the
fact that it covers some fundamental first-order schemes beyond the GM. In partic-
ular, to motivate Algorithm FO, let us consider the following two algorithms which
are of particular interest, and as we shall see below can be seen as special cases of
Algorithm FO.

We start with the so-called Heavy Ball Method (HBM). For earlier work on this
method see Polyak [18], and for some interesting modern developments and applica-
tions, we refer the reader to Attouch et al. [1,2] and references therein.

Example 1 The Heavy Ball Method (HBM)

Algorithm HBM

0. Input: f € C;' (RY), xo € RY,
L. x; =x0 — F.f' (x0)
2. Fori=1,...,N — I compute: x; 11 = x; — 7 f'(x;) + B(x; — x;—1)

Here the step sizes « and § are chosen such that0 < f < 1and 0 < @ < 2(1 + ),
see [18].

By recursively eliminating the term x; — x;_1 in step 2 of Algorithm HBM, we can
rewrite this step as

1< ,
Xi+1=)Ci_Z,§aﬂl Kfow), i=1,...,N—1.

Therefore, the heavy ball method is a special case of Algorithm FO with the choice
R — ek k=0,...,i,i=0,...N —1.

The next algorithm is Nesterov’s celebrated Fast Gradient Method (FGM) [15].
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Example 2 The fast gradient method (FGM)

Algorithm FGM

0. Input: f € C;'(RY), xo € RY,
1. V1 = X0, 1] = 1,

2. Fori =1,..., N compute:
@ xi=yi — 1+ 0.
14,/ 1441
®) iy =—5—,
©) yi+1 =xi + %(Xi — Xi—1)-

A major breakthrough was achieved by Nesterov in [15], where he proved that the
FGM, which requires almost no increase in computational effort when compared to
the basic gradient scheme, achieves the improved rate of convergence O(1/N?) for
function values. More precisely, one has’

2L ||x0 — x«1?

Fow) = flen) = =0

;o Yxe € Xu(f). 4.1

The order of complexity of Nesterov’s algorithm is also optimal, as it is possible to
show that there exists a convex function f € C i’l (Rd) such that whend > 2N +1, and
under some other mild assumptions, any first-order algorithm that generates a point
xn by performing N calls to a first-order oracle of f satisfies [16, Theorem 2.1.7]

3L|Ixo — x4l

fOn) = fxe) > m,

Yy € X5 (f).

This fundamental algorithm discovered about 30 years ago by Nesterov [15] has been
recently revived and is currently subject of intensive research activities. For some of
its extensions and many applications, see e.g., the recent survey paper Beck-Teboulle
[5] and references therein.

At first glance, Algorithm FGM does not seem to fit the class of algorithms defined
above (Algorithm FO). Here two sequences are defined: the main sequence xo, ..., xy
and an auxiliary sequence yi, ..., yn. Observing that the gradient of the function is
only evaluated on the auxiliary sequence of points {y; }, we show in the next proposition
that Algorithm FGM fits in this class through the following algorithm:

3 See remark following the proof of Theorem 1 in [15].
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Algorithm FGM’
0. Input: f € C;'(RY), xo € RY,

1. y1 =x0,11 =1,
2. Fori =1,..., N — 1 compute:

1+,/1+4¢2

@ tiy1 = ——, '
®) yis1 =y — L3 w0,
3. xy =yn — /0w,

with
il ® ifk+2<i,
i+1) N TN . . . .
eV =1 -, itk=i—1, (=1 N=1 k=1,...,i) (42)
1+ 4=1 ifk =i.
i+1
Proposition 2 The points yy, ..., yN, Xy generated by Algorithm FGM' are identical

to the respective points generated by Algorithm FGM.

Proof We will show by induction that the sequence y; generated by Algorithm FGM’
is identical to the sequence y; generated by Algorithm FGM, and that the value of
xy generated by Algorithm FGM' is equal to the value of xy generated by Algo-
rithm FGM.

First note that the sequence #; is defined by the two algorithms in the same way.
Now let {x;, y;} be the sequences generated by Algorithm FGM and denote by {y;},
x)y the sequence generated by Algorithm FGM'. Obviously, y| = y; and since #; = 1
we get using the relations 4.2:

1 1 n—1 1,
o=y = —hP oD =y -+ (1 + )f’(y1)=y1 - f o =x=m.

L L 153
Assuming ylf =y, fori =1,...,n, wethen have
/ ’ 1 (n+1) g1,/ 1 (n+1) 27, 7 1 = (n+1) 7,1
Vit = 30— TG0 = 2P O = £ 2T 00
k=1
_ _l 1+l‘n—1 f/( )_iﬂ(h(n)_l)f/( )—lgﬂh(n)f/(/)
Yn 2 P Yn L o n—1 Yn—1 2 1 k Yk

k=1

n—1
_ _l/ tn_l _l/ l/ _l (n)/,/
==+ ( 7o)+ 2 f Q) L;hk fok))

Int1

th — 1

1 1
=x, + P (_zf/(_Yn) + Z.f/(Yn—l) + - y;fl)

ty — 1

Int1

=Xp +

(Xn = Xp—1) = Yn+1-
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Finally,

1 1
Xy =Yy — Zf/ (yy) =~ — Zf/()’N) =XN.

4.2 Numerical estimation of a bound on Algorithm FO

To build the PEP for Algorithm FO, from which a complexity bound can be derived,
we follow the approach used to derive problem (G) for the GM. The only difference
being that here, of course, the relation between the variables x; is derived from the
main iteration of Algorithm FO. After some algebra, the resulting PEP reads

max LR*Sy Q)
GeRW+Dxd ;R

st.tr(GTA; ;G) <8 —68;, i<j=0,...,N,
w(G'B; ;G) <8 —8;, j<i=0,...,N,
r(GTC;G) <68, i=0,...,N,
tr(G" D;G +vu! G) < —8;, i=0,...,N,

where A,', s f?,-, js C’,- and ﬁi are defined, similarly to (3.5), by

t—1

o 1<
Aij = E(ui —up) i —up)’ + 3 Z Zhl(ct) (”J'”kT +“k”JT')’

t=i+1k=0
B ! r_ 1 S (®) T T
Bij =i —uj)ui—uj)” =7 > > (ujuk —i—ukuj),
1=j+1k=0
~ 1
Cj = EM[MiT,
| =
D; = E”"”iT + 3 ZZh,(:) (uiu,{ + ukuiT) (4.3)

t=1 k=0

and we recall that v € R? is a given unit vector, u; = ej4+1 € RN+ and the notation
i <j=0,..., N is ashorthand notation fori =0,...,N—1,j=i+1,...,N.

In view of the difficulties in the analysis required to find the solution of (G), an
analytical solution to this more general case seems unlikely. However, as we now
proceed to show, we can find an upper bound on the optimal solution of this problem
by solving a semidefinite program that can be computed numerically using state of
the art SDP software.
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Following the analysis of the GM, (cf. (G) in §3.2) we consider the following
simpler relaxed problem:

max LR?8y Q)
GER(N+1)Xd,3iER
st.tr(GTA;_1,G)<8_1—68, i=1,...,N,
t(GT D;G +vu! Gy < —8, i=0,...,N.
With the same proof as given in Lemma 2 for problem (Q’), we obtain that a dual

problem for (Q’) is given by the following convex semidefinite optimization problem
(as before, we omit the term L R?):

. 1
min 3! -
SN kA + X uD; bt
s.t. e 1 )=0,
27 2!
(. 1) € A,

where

AZ{(X,‘E) ERﬁ XRﬁ-H:T():)»], Ai — Ayl
4+17,=0,i=1,....N—1, Ay + v = 1}. 4.4

The structure of problem (DQ’) will be very helpful in the analysis of the next
section which further addresses the role of the step-sizes. Note that the data matrices
of both primal-dual problems (Q’) and (DQ’) depend on the step-sizes h,((’).

To avoid a trivial bound on problem (Q’), here we need the following assumption
on the dual problem (DQ'):

Assumption 1 Problem (DQ’) is solvable, i.e., the minimum is finite and attained
for the given step-sizes i\ .

Actually, the attainment requirement can be avoided if we can exhibit a feasible
point (A, T, t) for the problem (DQ’). As noted earlier, given the difficulties already
encountered for the simpler GM, finding explicitly such a point for the general Algo-
rithm FO is unlikely.

The promised complexity bound on Algorithm FO now easily follows and is deter-
mined by the optimal value of the dual problem (DQ’), which can be efficiently com-
puted by any numerical solvers for SDP [6,11,22] for small to medium scale problems.

Proposition 3 Fix any N,d € N. Let f € C z’l(Rd ) be convex and suppose that
X0, ..., xy € R? are generated by Algorithm FO, and that Assumption 1 holds. Then,

fxn) — f(xs) < LR*val(DQ').

Proof Follows from weak duality for the pair of primal-dual problems (Q")~(DQ") O
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10 T

—— Heavy ball method, a=1 $=0.5
—+&— FGM - main sequence
—+— FGM - auxiliary sequence
———— FGM - analytical bound

-
O\
=

—
ol
r

Performance estimate (log scale)

Fig. 1 The computed worst-case bounds on the HBM and FGM versus the classical analytical bound on
the FGM (4.1)

4.3 Numerical illustrations

We apply Proposition 3 to find bounds on the complexity of the heavy ball method
(HBM) with* @ = 1 and 8 = % and on the fast gradient method (FGM) with h,((’) as
given in (4.2), which as shown earlier, can both be viewed as particular realizations
of Algorithm FO.

The resulting SDP programs were solved for different values of N using CVX [8,10].
These results, together with the classical bound on the convergence rate of the main
sequence of the fast gradient method (4.1), are summarized in Fig. 1 and Table 1.

Note that as far as the authors are aware, there is no known convergence rate result
for the HBM on the class of convex functions in Ci’ ! As can be seen from the above
results, the numerically estimated bound for the HBM behaves slightly better than the
GM (compare with the explicit bound given in Theorem 1), but remains much slower
than the fast gradient scheme (FGM).

Considering the results on the FGM, note that the numerically estimated bounds for
the main sequence of point x; and the corresponding values at the auxiliary sequence
y; of FGM are very similar and perform slightly better than predicted by the classical
bound (4.1). To the best of our knowledge, the complexity of the auxiliary sequence
is yet unknown, thus these results encourage us to raise the following conjecture.

4 According to our simulations, this choice for the values of «, 8 produces results that are typical of the
behavior of the algorithm.
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Table 1 The computed worst-case bounds on the HBM and FGM versus the classical analytical bound on
the FGM (4.1)

N Heavy Ball FGM, main FGM, auxiliary FGM, analytical bound

1 LR2/6.00 LR2/6.00 LR2/2.00 LR2/2.0 = 2LR2/(1 + 1)2

2 LR2/7.99 LR2/10.00 LR2/6.00 LR2/4.5 = 2LR2/(2 + 1)2

3 LR2/9.00 LR2/15.13 LR2/11.13 LR2/8.0 = 2LR2/(3 + 1)2

4 LR2/12.35 LR2/21.35 LR2/17.35 LR2/12.5 = 2LR%/(4 + 1)?

5 LR2/16.41 LR2/28.66 LR2/24.66 LR2/18.0 = 2LR2/(5 + 1)2

10 LR2/39.63 LR2/81.07 LR2/77.07 LR2/60.5 = 2LR2/(10 + 1)?
20 LR2/89.45 LR2/263.65 LR2/259.65 LR2/220.5 = 2LR2 /(20 + 1)2
40 LR%/188.99  LRZ%/934.89 LR2/930.89 LR2/840.5 = 2LR2 /(40 + 1)2
80 LR2/387.91  LRZ%/3490.22 LR2/3486.22 LR2/3280.5 = 2LR% /(80 + 1)2

160 LR2/785.68  LRZ%/13427.43  LR?/1342343  LR?/12960.5 = 2LR%/(160 + 1)2
500 LR2/2476.11  LR%/127224.44  LR%/127220.32  LR2/125500.5 = 2LR?/(500 + 1)2
1,000 LR2/4962.01  LR2/504796.99  LR2/504798.28  LRZ/501000.5 = 2LR2/(1, 000 + 1)2

Conjecture 2 Let xo, x1,... and y1, y2,... be the main and auxiliary sequences
defined by FGM (respectively), then {f(x;)} and {f(y;)} converge to the optimal
value of the problem with the same rate of convergence.

5 A best performing algorithm: optimal step sizes for Algorithm FO

We now consider the problem of finding the “best” performing algorithm of the form
FO with respect to the new bounds. Namely, we consider the problem of minimizing
val(Q'), the optimal value of (Q’), with respect to the step sizes h := (h,(('))oik@-f N
defining the Algorithm FO, and which are now considered as unknown variables in
FO.

We denote by A,-, j(h) and Di (h), the matrices given in (4.3), which are functions
of the algorithm step sizes /. The resulting bound derived in Proposition 3 is thus a
function of &, and the problem of minimizing val(DQ’) with respect to the step sizes
h thus consists of solving the following bilinear problem:

. 1 Z,N:1 NiAi_1i(h) + Z,N:o 7 D; (h) %r
min {—7:
h\,T,t 2 %TT %t

>0,(A, 7)€ A}, (BIL)

with A defined as in (4.4).

Note that the feasibility of (BIL) follows from the proof of Theorem 2, where an
explicit feasible point is given to (DG’), which is a special instance of (BIL) when the
steps (h,(:)) are chosen as in the GM.
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From the definition of the matrices A,-, j(h) and ﬁi (h), we get

N N L L
EAiAifl,i(h) + %TiDi(h) =3 Z)\i(uifl —u)(ui—y —u)" + 3 Z:;TiuiuiT
1= 1= = 1=

N i-1 i
1 )
+ 3 ZZ()‘ihg)—i—T" Z h,El)) (uiu,{—i—uku?) .
i=1 k=0 1=t
Introducing the new variables:
. i
ik =xihd 1 D by i=1... N k=0, i-1 5.1

t=k+1

and denoting r = (r; x)o<k<i<N, We obtain the following linear SDP relaxation of

(BIL):
. 1 S(r, A, 1) %‘L’ -
min { =t : 1 1 >0, A, t)e A}, (LIN)
AL T, 2 iTT it

where

N
1
St 1) =5 ;Ai(uiq —ui) iy —ui)"
=

i—1

N N
1 1
+ 3 E tl-u,-uiT + 3 E Tik (u,u,{ + ukulr) .
i=0

i=1k

Il
=}

This convex SDP can now be efficiently solved by numerical methods. As the
following theorem shows, the optimal solution of (LIN) can then be used to construct
an optimal solution for (BIL) and hence recover optimal values for the step sizes h.

Theorem 3 Suppose (r*, \*, T t*) isan optlmalsolutlonfor(LIN) then (h, \*, T* t*)

is an optimal solution for (BIL), where h = (hk Jo<k<i<N is defined by the following
recursive rule

i M ifax#£0
h};): wr i  i=1,...,N, k=0,...,i—1. (5.2)

0 otherwise,

Proof As (LIN) is a relaxation of (BIL), it is enough to show that (BIL) can achieve
the same objective value. Let (r*, A*, T, ¢t*) be an optimal solution for (LIN). If
A;" # 0 forall 1 <i < N, then (5.2) satisfies all the equations in (5.1) and therefore
(h, \*, T*, t*) is feasible for (BIL).
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Table 2 An approximate

2 2

solution of LR2val(LIN) for N LR*val(LIN) N LR"val(LIN)
various values of N 2 2

1 LR2/8.00 20 LR2/525.09

2 LR2/16.16 40 LR2/1869.22

3 LR2/26.53 80 LR2/6983.13

4 LR?/39.09 160 LR2/26864.04

5 LR?/53.80 500 LR2/254482.61

10 LR2/159.07 1,000 LR2/1009628.17

Suppose A}, = 0 for some 1 < m < N and that m is the maximal index with this
property. Then by the equality and non-negativity constraints in (LIN), we get that
M=M=...=A,=0andtf =1 =... =1, | =0.Let S := S(r, A*, 1),
then by the positive semidefinite constraint in (LIN), we have S > 0. From the linear
equalities connecting A and 7 it follows that

o _ |20i+T) =41, ifi =1,
Ao Ar ) =A ifi=2,... N,
and we get that S = ... = S;,.» = 0. By the properties of positive semidefinite
matrices we now get that rl.*jk =0fori=1,....mandk =0,...,i — 1, hence the
set of equations (5.1) with the chosen values of h,(f) is consistent. O

The optimal value of L RZval(LIN) for various values of N is summarized in Table 2.
As can be seen from these results (compare with Table 1), the worst-case performance
of the new algorithm is almost exactly two times better than the worst-case performance
of the FGM. Note that the bounds given here are worst-case bounds: the performance
of the considered methods on a specific application can be very different.

The resulting first-order algorithm with the computed optimal step sizes h,((') for
N =5 is illustrated in the example below.

Example 3 Consider the following first-order method, which was constructed by solv-
ing (LIN) for N = 5.

Input: f € Ci’l(Rd), xo € R,

x1 = x0 — 2450 £ (xp),

xp = xp — 2L 7 () — 2014 pr (),

x3 = xp — 080 £ (xg) — B2 f1(xy) — 22 f (1),

xg = x3 — S £ (xg) — BFB0 (1) — SR f () — 2P0 ' (x3),

xs = xy — S f1(xg) — HPR L) = ST () — BPE f(a3) —
20778 £ (xs).

kv = o
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A bound on the worst-case performance the algorithm in this example is given by
the following inequality (see N = 5 in Table 2):

L|lxo — x|

fxs) — fxy) < 380

Vs € X.(f).

6 Conclusions

We introduced a novel approach for estimating the worst-case complexity of first-
order methods for convex optimization via the PEP problem, its relaxations, and exact
or approximate solution using duality. Using this approach we derived a tight bound
on the worst-case performance of the fixed-size gradient method and established new
bounds that can be numerically estimated for a general class of first-order algorithms,
which includes the Heavy Ball method and Nesterov’s fast gradient method. We then
showed how to construct optimal stepsizes for this first-order class.

While the proposed approach and the PEP problem offer a novel way to measure the
complexity of any algorithm, it should be stressed that this approach is of course not
without limitations. Indeed, as shown in the paper, finding a bound on the PEP problem
is challenging. In the case of the GM with a fixed step size, the derivation of simple
closed form expression for the bound required a dedicated analysis. Furthermore, for
more general first-order algorithms, we are left with the problem of approximating
the solution of the problem using SDP solvers which are often efficient only for
small to medium scale problems. Nevertheless, the novelty of the proposed approach
offers possible directions for extensions that could be considered in future research
by formulating and analyzing the corresponding PEP problem for other first-order
algorithms. This includes for example the analysis of GMs with different variable
step-size strategies and the analysis of algorithms with different classes .# of input
functions, such as for example the class of strongly convex functions.
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7 Appendix: Proof of Lemma 3

We now establish the positive definiteness of the matrices Sy and Sy given in (3.8) and
(3.9), respectively.

7.1 S >0

We begin by showing that Sy is positive definite. Recall that
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20—\

—A1 2A =Xy
—Xy  2M3 —A3

So =
—AN—1 2AN —Apn
—AN 1
for
i = 1—.7 = 1, 9 N'

2N +1—i

Let us look at €7 Sp£ forany & = (&, ..., &n)":

N—1 N—1
ETSoE = D" 201 —2 D) hiniibin + &y

i=0 i=0

N—1 N—-1
= D dipiEir —E)2 + Mg+ D (it — ME + (1 — ANER
i=0

i=1

which is always positive for & # 0. We conclude that S is positive definite.

728 >0
We will show that S is positive definite using Sylvester’s criterion.’
Recall that

2A1 Ao — M oo AN — AN 1 —Apn
A — M 2A2 AN —An—1 1 —2Apn

S1= : g E
AN —AN_1 AN —AN_1 2AN 1 — Ay

1 —An 1 —Apn 1 — Ay 1

for

i

- ' i=1.....N.
IN+1—i '

A

5 Despite the interesting structure of the matrix Sy, this proof is quite involved. A simpler proof would be
most welcome!
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A recursive expression for the determinants We begin by deriving a recursion rule for
the determinant of matrices of the following form:

do aj ar . Qg—1  ag
ay d  a ag—1  ak
ap a dy ax—1 ag
My =
k-1 k-1  Qp—1 dr1 ak
ay ai ai ee.ap dg

Ak
Aak—1

To find the determinant of M}, subtract the one before last row multiplied by
from the last row: the last row becomes

ai ai
0,...,0,a, — di_1,d; — a ).
ak—1 Ai—1

Expanding the determinant along the last row we get

det M = (dk - ak) det M1 — (ak - dkl) det(Mp )k k—1
Ak—1

ak—1

where (My )i k-1 denotes the k, k — 1 minor:

do aj a ... ag—p ai
a d as ax—2  ak
a as d> ax—2  ak
(Mg k-1 =
-2 Qk—2 Qg—2 dr—2  ai
k-1  Qk—1 Qk—1 ag—1  ak

If we multiply the last column of (Mj )k r—1 by ”Z—;l we get a matrix that is different
from Mj._; by only the corner element. Thus by basic determinant properties we get
that

af—1
o det(Mi)k k—1 = det My_1 + (ax—1 — dix—1) det My_».
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Combining these two results, we have found the following recursion rule for det My,
k>2:

det M; = (dk - ak) det My

ak—1

— (ak - dkl) ( K det M1 + (ak — a—ka’kl) det Mkz)
ak—1 ak—1 ak—1
= ((dk G ak) — (ak — a—kdk_l) ak )det M
ak—1 ak—1 ak—1

2
— (ak— ak dk—l) det My_»
ag—1

or

2a? a’d_ di 1\>
det My = dp — —& + kzk L )det My_y — a? (1— k 1) det My_5. (7.1)
ak—1 ai_y ag—1

Obviously, the recursion base cases are given by

det My = d,
det M1 = dyd, —alz.

Closed form expressions for the determinants Going back to our matrix, Sy, by choos-
ing

1
di=2"1 0. N-1
2N —i
dy =1
ol .
g =T L i=1,...N-1
2N —i 2N +1—1
N 1
ay=1- ——=——
N+l N+1

we get that My is the k 4 1’°th leading principal minor of the matrix S7. The recursion
rule (7.1) can now be solved for this choice of @; and d;. The solution is given by:

(2N — k)2 2N +4Ni —2i2 + 1 (2N +1—1i)?

IN +1)2 k ON —2k —1 KON +4Ni —2i2 +1
dethzg(l_i_Z )H + 4Ni i+ ,
=0

i=

(7.2)

@ Springer



Performance of first-order methods for smooth convex minimization

479

fork=0,...,N—1,and

det My =detL| =

QN+ 12X oON 1 aNi —2i2 41

2
(N+1) paliy

Q2N +1—i)?

(7.3)

Verification We now proceed to verify the expressions (7.2) and (7.3) given above.
We will show that these expressions satisfy the recursion rule (7.1) and the base cases
of the problem. We begin by verifying the base cases:

det My =

det M| =

(2N — 1)2

1

(2N)?

(2N + 1)? 2N — 1
2N +1

ON+1 N

1

1
= dy,

6N — 1

_ 28N2-20N-1 4

(2N + 1)? 2N—3+2N—3
2N+1 6N —1

2N +1 (2N)?

2

4N22N —1)2 ~ N@N—-1) (

Now suppose 2 < k < N. Denote

2 2 QN+Dk—k*—1 .
w0 = dp — 2a; N ajdi—1 B 42(21v——k)2’ ifk < N,
2 2N242N—1 :
ak—1 ak*l 3(2]3_7)2, ifk = N,
2 (4kN—2N—2k*+4k—1)> .
po=a?1- di-1\" _ | “anrron—ksn? ¢ k<N,
k=% a) T | enean-12 k= N
(N+1)22N+1)%° o
then the recursion rule (7.1) can be written as
det My = o det My — B det My_».
Further denote
1 .
ri = - - , 1=0,...,N—1,
2N +4Ni —2i2 +1
2N + 1)?
5 = & i=0,...,N—1,
(2N —i)?
pi=2N-2i—-1, i=0,...,N—1,
2N +4Ni —2i>+1
gi= AL o N

2N +1—1i)?

1)? 5
—— ) =dods —a?.
N — 1 2N) dod1 — 41
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then the solution (7.2) becomes

k k
det My =s; (1 + pr zri)H%‘,
i=0 /=0

and (7.3) becomes

QN + 12 YS!

det My =———_
YT Y

qi-

Substituting (7.2) in the RHS of (7.1) we get thatfork =2,..., N

oy det M1 — Br det My_»

k=1 \ k-1 k=2 \ k=2
= ok Sk—1 (1 +pe1 Y ri) [14 — Besia (1 + P2y ri) [14
i=0 /i=0 i=0 / i=0
k=2 P B k=2 \ k-1
=(OtkSk1 (1+Pklrk1 +Pr-1 Zri)— Sk—2 — Sk—2Pk—2 Zri) qi
1
=0 /=0

=0 dk—1 Gk— ; ;

k=2
k B
Sk—2 + (OtkSklpkl T 1S1<2P/<2) Zri)

k-1 pary

= (OlkSk1(1 + Dk—1Tk—1) —
k=1
X Hqi.
i=0

It is straightforward (although somewhat involved) to verify that for k < N

k
o 1Sk_z = skqi (1 + prri—1 + pire),

aSk—1(1 + pr—1rk—1) —

and

k
OkSk—1Pk—1 — q Sk—2Pk—2 = Sk PkYk-
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We therefore get

oy det My_1 — Br det My—_»o

k=2 \ k-1
= skae(1+ prriet + prre) +swprax D ri ) [ | a
i=0 i=0

k k
s{ 1+pe D i )[]ai

i=0 i=0

= det My,

and thus (7.2) satisfies (7.1). It is also possible to show that

BN (2N +1)2
! irng) — =2 -
ansy—1(1 + py—1rv-1) N TN

N
sN—2pnN—2 =0,

UNSN—-1PN-1 —

thus, fork = N

aydet My_1 — ﬂN det My_»

_@N+ﬂ
__W+D2H

=det My,

and the expression (7.3) is also verified.

To complete the proof, note that the closed form expressions for det My consist of

sums and products of positive values, hence det My is positive, and thus by Sylvester’s
criterion S is positive definite.
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